

Scheme II

hydrate among the volatile products. Thus the reaction proceeds by intramolecular transfer of ¹⁸O via a four-membered-ring intermediate.

The isomeric 1-[2-[(2-chloroethyl)sulfinyl]-2,2-dimethylethyl]-3-cyclohexyl-1-nitrosourea (1d)¹² decomposes in pH 7.0 buffer to give 2-[(2-chloroethyl)thio]-2-methylpropanal (8) and small amounts of 1-[(2-chloroethyl)thio]-2-methylpropene (10),¹³ 1-[(2-hydroxyethyl)thio]-2-methylpropene (11),¹³ cyclohexyl isocyanate, and dicyclohexylurea. Isolation of aldehyde 8 is in accord with the generation of the sulfoxide-substituted diazohydroxide 3d and then formation from the latter of a 3,3-dimethyl-2-(2-chloroethyl)-1,2-oxathietanium (4d), which undergoes proton loss at position 4 and breakage of the O-S bond with formation of the propanal 8. The corresponding reaction of 1-[2-[(2-chloroethyl)sulfinyl-¹⁸O]-2,2-dimethylethyl]-3-cyclohexyl-1-nitrosourea (1d-¹⁸O)¹¹ to afford 2-[(2-chloroethyl)thio]-2-methylpropanal-¹⁸O (8-¹⁸O) is in accord with the suggested pathway.

Controlled aqueous decomposition of 1-[2-[2-chloroethyl)sulfinyl]-1,1,2,2-tetramethylethyl]-3-*tert*-butyl-1-nitrosourea (1e)¹⁴ at pH 7.0 and 38 °C afforded acetone, thioacetone, *tert*-butyl isocyanate, and di-*tert*-butylurea. GC analysis^{5,15} of the reaction mixture permitted detection of the labile 3,3,4,4-tetramethyl-1,2-oxathietane (retention time 5.3 min), GC-MS analysis of which gave the corresponding correct m/e of $132.^{16}$ The GC analysis also detected 2,3-dimethyl-2-butene (9e) from the extrusion of SO from the 1,2-oxathietane.¹⁵ This alternative mode of cleavage has a counterpart in the fragmentation of the m/e 132 molecular ion of 5e.¹⁶

Evidence for the existence of 1,2-oxathietane has not, to our knowledge, been hitherto reported. Only one report claiming the intermediacy of such a species in the pyrolysis of 1,2,3-oxadithiolane 2-oxide and thiirane 1-oxide at 1043-1404 K has been made;¹⁷ however, no evidence was obtained for what now appears to be the characteristic (2 + 2) cycloreversion. The latter reaction is anticipated by analogy with the 1,2-dioxetanes.¹⁸ Attempts to isolate 1,2-oxathietanes and to examine their possible chemiluminiscent behavior are in progress.

Acknowledgment. This work was supported by Grant 1R01 CA21488-01 awarded by the National Cancer Institute, DHEW, to J.W.L. and by a grant from the Alberta Provincial Cancer Hospitals Board.

(18) (a) Kopecky, K. R.; Filby, J. E., Mumford, C.; Lockwood, P. A.; Ding, J.-Y. Can. J. Chem. 1975, 53, 1103. (b) Richardson, W. H.; Montgomery, F. C.; Yelvington, H. E.; O'Neal, H. E. J. Am. Chem. Soc. 1974, 96, 7525. (c) Turro, N. J.; Lechtken, P. Ibid. 1972, 94, 2886. (d) White, E. H.; Wildes, P. D.; Weicko, J.; Doshan, H.; Wei, C. C. Ibid. 1973, 95, 7050 and references therein.

Stereocontrolled Osmylation of Medium-Ring Alkenes: Synthesis of a C_1-C_9 Erythronolide Fragment

E. Vedejs,* J. M. Dolphin, and H. Mastalerz

S. M. McElvain Laboratory of Organic Chemistry Chemistry Department, University of Wisconsin Madison, Wisconsin

Received July 15, 1982

We are interested in the stereochemistry of medium- and large-ring alkene addition reactions, many of which occur with high selectivity.¹ The goal is to identify dominant conformational factors that might have predictive value in synthesis. In this communication we report that osmylation of the nine-membered-ring alkene 1 can be used for stereocontrolled synthesis of an erythronolide fragment having the correct C_2 - C_6 stereochemistry.² For comparison, two isomeric ten-membered-ring alkenes 2 and 3 have also been studied.

Syntheses of alkenes 1-3 are outlined in Scheme I. The α -oxo dithioester Diels-Alder reaction occurs with normal regiochemistry³ to give 4, which is efficiently desulfenylated to 5.⁴ After

⁽¹¹⁾ Prepared by the methylene blue sensitized photooxidation of 1a, 1d, or 1e in methanol in the presence of ${}^{18}O_2$ (99% isotopic enrichment), 1a- ${}^{18}O_1$, m/e 312, 249 (100), M⁺ - CH₂CH₂CI = C₁₁H₂₃N₂OS ${}^{18}O_1$.

⁽¹²⁾ Prepared as described in ref 8 from (2-hydroxy-2-methylpropyl)amine.

⁽¹³⁾ These products arise from a competing minor deoxygenation pathway of the parent sulfoxide giving rise, in each case, to traces of aqueous decomposition products characteristic of the corresponding thioether nitrosourea⁸ (Scheme II).

⁽¹⁴⁾ Prepared from tetramethylaziridine (Closs, G. L.; Brois, S. J. J. Am. Chem. Soc. 1960, 82, 6068) as described in footnote 9. The tert-butyl group ensures the desired regiochemistry in the nitrosation step.

⁽¹⁵⁾ Integrated GC peak areas of components given as percent relative to the *tert*-butyl isocyanate peak: vinyl chloride (14.5); thioacetone (7.0); 2,3-dimethyl-2-butene (53); acetone (22); 3,3,4,4-tetramethyl-1,2-oxathietane (2.0).

⁽¹⁶⁾ m/e (%) 132.15904 (10) M⁺ (measured for C₆H₁₂SO), 117 (4) (M⁺ - CH₃), 116 (17) (M⁺ - O), 84 (100) (M⁺ - SO), 74 (8) ((CH₃)₂C=S⁺).

⁽¹⁷⁾ Carlsen, L.; Egsgaard, H. J. Chem. Soc., Perkin Trans. 2 1982, 279. Semiempirical CNDO/B calculations predict a planar configuration for 1,2oxathietane at least in the gas phase (Snyder, J. N.; Carlsen, L. J. Am. Chem. Soc. 1977, 99, 2931.

 ^{(1) (}a) Still, W. C. J. Am. Chem. Soc. 1979, 101, 2493. (b) Still, W. C.;
 Galynker, I. Tetrahedron 1981, 37, 3981. (c) Still, W. C.; Galynker, I. J. Am.
 Chem. Soc. 1982, 104, 1774. (d) Doskotch, R. W.; Kelley, S. L., Jr.; Bufford,
 C. D. J. Chem. Soc., Chem. Commun. 1972, 1137. (e) Corey, E. J.; Nicolaou,
 K. C.; Melvin, L. S., Jr. J. Am. Chem. Soc. 1975, 97, 654.

⁽²⁾ For total synthesis of erythronolide A, see: Corey, E. J.; Hopkins, P. B.; Kim, S.; Yoo, S.; Nambiar, K. P.; Falck, J. R. J. Am. Chem. Soc. 1979, 101, 7131.

⁽³⁾ Vedejs, E.; Arnost, M. J.; Dolphin, J. M.; Eustache, J. J. Org. Chem. 1980, 45, 2601.

^a OsO₄/pyridine. ^b NaHSO₃. ^c HSCH₂CH₂CO₂H; NaHCO₃/H₂O. ^d W 2 Raney nickel. ^e (CH₃O)₂C(CH₃)₂H⁺.

ketalization, highly selective hydroboration with thexylborane leads to 6 after oxidative workup with alkaline H_2O_2 . The key olefin 7 can then be prepared by deketalization, Wittig reaction, and benzylation, 42% overall from acyclic precursors. Three-carbon ring expansion by alkylation with $C_2H_3O_2CCH(CH_3)OSO_2CF_3$ followed by DBU affords 1 in 86% yield. The *E*-olefin geometry is proved by NOE studies (see below) and is anticipated provided that S-alkylation occurs with normal equatorial selectivity.⁵

Synthesis of 2 is accomplished by an adaptation of the remarkable 3,3-rearrangement which is observed when dichloroketene is generated in the presence of allylic ethers or sulfides.⁶ Thus, Cl_3CCOCl (1.5 equiv) is added to a refluxing mixture of Zn/Cu(5 equiv), ether, and thiane 7. Dechlorination of the initial product 8 with Zn/HOAc affords 2 in 80% yield from 7. The isomeric Z-olefin 3 is available from 2 by photosensitized isomerization of the double bond (33% of 3 recovered at 50% conversion of 2).

An assignment of preferred conformation along the C_2 - C_7 segment of 1 can be made from NMR data. The crownlike

⁽⁴⁾ Desulfenylation with Ph₃P/CH₃CO₂H/EtOH: Oki, M.; Fukanishi, W.; Nakamura, A. Bull. Chem. Soc. Jpn. 1971, 44, 828, 832.
(5) Vedejs, E.; Arco, M. J.; Powell, D. W.; Renga, J. M.; Singer, S. P. J. Org. Chem. 1978, 43, 4831. Cerë, V.; Paolucci, C.; Pollicino, S.; Sandri, E.; Fava, A. Ibid. 1981, 46, 3315.

⁽⁶⁾ Malherbe, R.; Bellus, D. Helv. Chim. Acta 1978, 61, 3096. Rosini, G.; Spineti, G. G.; Foresti, E.; Pradella, G. J. Org. Chem. 1981, 46, 2228.

Communications to the Editor

geometry drawn in Scheme I follows from uniformly large coupling constants $(J_{2,3} = J_{3,4} = 8.6 \text{ Hz}, J_{4,5} = 11 \text{ Hz})$ for adjacent proton pairs and from NOE effects suggesting eclipsed C-4 (H) and C-6 (CH₃) groups (irradiate C-6 (CH₃), 23% enhancement at C-4 (H), no enhancement at C-5 (H); irradiate C-5 (H), 13% enhancement at C-3 (H)). NOE experiments with the *E*-olefin **2** have proved inconclusive, and only two of the relevant coupling constants can be assigned securely: $J_{3,4} \cong J_{4,5} = 10 \text{ Hz}$. The dihedral angles for H-C₅-C₄-H and H-C₄-C₃-H apparently are similar in both **1** and **2**. In the case of **3**, NOE enhancement at C-5 (H) is observed upon irradiation of C-6 (CH₃), and $J_{4,5} = 12 \text{ Hz}$ while $J_{3,4} \le 1 \text{ Hz}$. These results establish olefin geometry and suggest a preference for conformers in which the C-4 methyl avoids the C-7 methylene group and minimizes transannular interactions, as in **3** (Scheme I).

Osmylation of 1 occurs to give a single diol, 9 (75%).^{7a} To prove which alkene face is attacked, we converted 9 into 11 by treatment with W2 Raney nickel (desulfurization and debenzylation to 10) followed by acetonide formation with dimethoxypropane/TsOH. The values $J_{3,4} = J_{4,5} = 2.2$ Hz support a chairlike acetonide with an axial C₄-CH₃ group and equatorial isopropyl and lactone substituents. Similar (within 0.6 Hz) J values are reported for related erythronolide 3,5-acetonide segments.⁸ Osmylation stereochemistry of 1 therefore corresponds to attack on the exposed olefin face of the conformer deduced from NMR data (Scheme I).

Diol intermediates have not been isolated from reaction of 2 or 3 with OsO₄/pyridine due to rapid S to O acyl transfer.^{7b} Rearranged γ -lactones are formed in each case. Stereochemical correlation as before (Raney nickel desulfurization; acetonide formation) establishes the following events: $2 \rightarrow 12 \rightarrow 13 \rightarrow 14$ and $3 \rightarrow 15 \rightarrow 16 \rightarrow 17$. The correlation compound 17a has $J_{3,4}$ = 1.8 Hz and $J_{4.5}$ = 2.2 Hz, values nearly identical with those of 11. Methylation of 17a (LDA, CH₃I) affords 17b (single major isomer), which is different from either methyl epimer of 11 but has similar $J_{3,4}$ and $J_{4,5}$ values. Therefore, 11 and 17 have the same stereochemistry at C₃, C₄, and C₅, but differ at C₆ as expected from the differing olefin geometry in precursors 1 and 3. The correlation compound 14a and the diastereomers 14b obtained by methylation all have $J_{3,4} = 3.7$ Hz and $J_{4,5} = 6.4 \pm 0.2$ Hz. These coupling constants are in excellent agreement with the corresponding values from Heathcock's analogous structure.^{8b} Therefore, 14 must have unnatural stereochemistry at both C_{s} and C_6 relative to erythronolide, and osmylation of the *E*-olefin isomer 2 in the ten-membered ring series must occur with opposite olefin face selectivity compared with the nine-membered E-olefin 1.

The correct diol 9 can be converted into an acyclic C_1-C_9 erythronolide fragment having differentiated oxygen substitution at each end of the chain. Acetonide 18 is easily prepared, and reaction with N-chlorosuccinimide affords α -chloro sulfide 19 (95%). Solvolysis (H₂O/CH₃CN/CaCO₃), borohydride reduction, and S-methylation afford the desired erythronolide segment 20 (73%). Related applications of this strategy to total synthesis will be described in due course.

Our approach was based on the expectation that 1 would adopt a crownlike geometry in the vicinity of the *E* olefin as shown in Scheme I. This seemed likely because numerous naturally occurring medium- or large-ring *E* olefins have similar *local* geometries in the solid state, and alkyl branch points α to the double bond adopt the pseudoequatorial orientation whenever possible.⁹

An extrapolation of this geometry to olefin cis-addition reactions is plausible for reactant-like transition states, and least hindered approach ("peripheral attack") corresponds to the conversion of 1 into 9.

We are aware of two examples in the literature where cyclic E olefins follow the same stereochemical pattern. Corey and Hopkins have recently shown that the C_{11} , C_{12} hydroxyls of erythronolide A 3,5-diacetonide can be introduced with natural stereochemistry by osmylation of the corresponding E olefin.^{10a} If the alkene adopts a crownlike local geometry, both α -alkyl branch points can occupy pseudoequatorial orientations. Similar olefin face selectivity is observed in the epoxidation of an α -branched trisubstituted E olefin in the maytansinoid series.^{10b} If these reactions are examples of a resonably general stereochemical phenomenon, it will be necessary to study simpler E olefins before the contrasting behavior of the ten-membered alkene **2** can be understood. At this point, speculations on the role of special features such as the transannular effect of a thiol ester π system would be premature.¹¹

The stereochemistry of osmylation of the Z-olefin 3 also corresponds to least hindered attack (away from ring carbons) on a local geometry having a pseudoequatorial methyl group. There are some examples of related conformational preferences in the work of Still et al.,¹ and X-ray data support the notion that Z alkenes prefer local geometries similar to 3.¹²

^{(7) (}a) Osmylation of 1: 0.27 mol of $OsO_4 + 0.182 \text{ mmol of } 1$, pyridine (3 mL), room temperature, 10 min; NaHSO₃ (1 g) in 10 mL H₂O, 1 h. (b) Osmylation of 2 or 3: 0.14 mmol of OsO_4 , 0.094 mmol of 2 or 3; 3 mL of pyridine, 30 min, room temperature. To cleave the osmate ester, 3-mercaptopropionic acid (0.8 mL) is added (0.5 h, 0 °C.) After standard aqueous bicarbonate workup, the crude product is stirred with silica gel (4 g) in CH₂Cl₂ overnight to complete conversion of diol into lactone.

^{(8) (}a) Heathcock, C. H.; Hagen, J. P.; Jarvi. E. T.; Pirrung, M. C.; Young, S. D. J. Am. Chem. Soc. **1981**, 103, 4972. Masamune, S.; Hirama, M.; Mori, S.; Ali, S. A.; Garvey, D. S. *Ibid.* **1981**, 103, 1568. We thank Professors Heathcock and Masamune for comparison spectra. (b) Heathcock, C. H., Personal communication.

⁽⁹⁾ Selected medium-large-ring α -alkyl E olefins. Dolabella diterpenes: Ireland, C.; Faulkner, D. J.; Finer, J.; Clardy, J. J. Am. Chem. Soc. 1976, 98, 4664. Kijanimycin: Mallams, A. K.; Puar, M. S.; Rossman, R. R.; McPhail, A. T.; Macfarlane, R. D. *Ibid.* 1981, 103, 3940. Avermectins: Springer, J. P.; Arison, B. H.; Hirshfield, J. M.; Hoogsteen, K. *Ibid.* 1981, 103, 4221. Kromycin: Tsai, C.; Stezowski, J. J.; Hughes, R. E. *Ibid.* 1971, 93, 7286. Whaley, H. A.; Chidester, C. G.; Mizsak, S. A. Wnuk, R. J. *Tetrahedron Lett.* 1980, 21, 3659. Obtusallene: Cox, P. J.; Imre, S.; Islimyeli, S.; Thomson, R. H. *Ibid.* 1982, 23, 579. Tetronolide: Hirayama, N.; Kasai, M.; Shirahata, K.; Ohashi, Y.; Sada, Y. *Ibid.* 1980, 21, 2559. Euphoscopins: Yamamura, S.; Kosemura, S.; Ohba, S.; Ito, M.; Saito, Y. *Ibid.* 1981, 22, S15. Euglobal: Sawada, T.; Kozuka, M.; Komiya, T.; Amano, T.; Goto, M. *Chem. Pharm. Bull.* 1980, 28, 2546. Cytochalasin H: Beno, M. A.; Cox, R. H.; Wells, J. M.; Cole, R. J.; Kirksey, J. W.; Christoph, G. G. J. Am. Chem. Soc. 1977, 99, 4123. Chaetoglobosins: Springer, J. P.; Clardy, J.; Wells, J. M.; Cole, R. J.; Kirksey, J. W.; Macfarlane, R. D.; Togerson, D. F. Tetrahedron Lett. 1976, 1355.

^{(10) (}a) Corey, E. J.; Hopkins, P. B. Tetrahedron Lett. 1982, 23, 1979.
(b) Corey, E. J.; Weigel, L. O.; Chamberlin, R.; Cho, H.; Hua, D. H. J. Am. Chem. Soc. 1980, 102, 6613.

⁽¹¹⁾ An acyclic derivative of 2 is osmylated with essentially no selectivity. Thus, thiol lactone cleavage (LiOEt) and S-acylation followed by OsO₄ affords a 1.5:1 mixture of γ -lactones that have been converted into 14a and 11, respectively.

Work is underway to determine the scope of local conformational control in medium-ring alkene addition reactions.

Acknowledgment. This work was supported by a grant from the National Science Foundation (CHE-8113026).

Supplementary Material Available: Spectral characterization of 1-3, 9, and 20 (2 pages). Ordering information is given on any current masthead page.

(12) Selected medium-large-ring α -alkyl Z olefins. Dictiodiol: Finer, J.; Clardy, J.; Fenical, W.; Minale, L.; Riccio, R.; Battaile, J.; Kirkup, M.; More, R. E. J. Org. Chem. 1979, 44, 2044. Neolemnanes: Izac, R. R.; Fenical, W.; Tagle, B., Člardy, J. Tetrahedron 1981, 37, 2569. Rubradirin: Hoeksema, H.; Mizsak, S. A.; Baczynski, L. J. Antibiot. 1979, 32, 773. Macbecins: Muroi, M.; Haibara, K.; Asai. M.; Kamiya, K.; Kishi, T. Tetrahedron 1981, 37, 1123. Latrunculine A: Kashman, Y.; Groweiss, A.; Shmueli, U. Tetrahedron Lett. 1980, 21, 3629.

Additivity Relation in the Amplitudes of Exciton-Split **Circular Dichroism Curves Arising from Interactions** between Different Chromophores and Its Application in Structural Studies

Richard J. Stonard, Diane A. Trainor, Munehiro Nakatani, and Koji Nakanishi*

> Department of Chemistry, Columbia University New York, New York 10027

> > Received August 23, 1982

Interaction of the electric transition moments of two or more chromophores within a chiral molecule constitutes a coupled oscillator.¹ This condition gives rise to Davydov split CD curves.² The closer the λ_{max} of the interacting chromophores, the more efficient the coupling.³ However, a split CD is observed when the λ_{max} values differ by as much as 100 nm. 3,4 $\,$ Valid analyses can also be obtained when only one of the Cotton effect extrema is discernable.4,5

The results of over 40 pyranose p-bromobenzoates showed that the amplitudes of split CD curves ("A values") can be approximated by the sum of dibenzoate interactions which are constants.⁶ Herein we show that this additivity relation can be generalized as illustrated (Scheme I) by the interaction between enone (e.g., 1 λ_{max} 244 nm (ϵ 12400), and 2 λ_{max} 243 nm (ϵ 10300), in MeOH) and unsubstituted benzoate (λ_{max} 229.5 nm (ϵ 15300), in MeOH) chromophores. These results are then applied to a configurational problem involving complex natural product derivatives having benzoate and furan chromophores.

The phytocdysteroids ponasterone A $(PN-A, 1)^7$ and ajugasterone C (AJG-C, 2)⁸ can be converted into the 2,3-dibenzoate 3 and 2,3,11-tribenzoate 4 of the respective 6-hydroxy-20,22-

(6) Liu, H. W.; Nakanishi, K. J. Am. Chem. Soc. 1982, 104, 1178 (7) Nakanishi, K.; Koreeda, S.; Sasaki, S.; Chang, M. L.; Hsu, H. Y. J.

Chem. Soc., Chem. Commun. 1966, 915

(8) Imai, S.; Murata, E.; Fujioka, S.; Koreeda, M.; Nakanishi, K. J. Chem. Soc., Chem. Commun. 1969, 546.

Figure 1. CD of 12-benzoates and 7,12-dibenzoates of trichilins A and B, in MeOH.

acetonides, by acid hydrolysis of the 2,3,20,22-diacetonide to the 20,22-acetonide, benzoylation, and NaBH₄ reduction.⁹ Dibenzoate 3 displays a split CD (all data in MeOH) with negative/positive Cotton effects at 237 nm/219 nm, A -33, arising from the negatively coupled oscillator (see conformational structure I). In tribenzoate 4 the A value is -59. In view of the additivity relation,⁶ the 2,3-dibenzoate and 11-benzoate interaction can then be assigned an A value of -26^* (calculated values indicated by

0002-7863/83/1505-0130\$01.50/0 © 1983 American Chemical Society

⁽¹⁾ Kuhn, W. Trans. Faraday Soc. 1930, 2B, 293. (b) Kirkwood, J. G.

 ⁽¹⁾ Rullin, w. 17ab. 17 1969, 2, 266. (f) Johnson, W. C.; Tinoco, I., Jr. Biopolymers 1969, 8, 715. (g) Buckingham, A. D.; Stiles, P. J. Acc. Chem. Res. 1974, 7, 258.

^{(3) (}a) Harada, N.; Nakanishi, K. Acc. Chem. Res. 1972, 5, 257; (b)

⁽⁵⁾ Gonnella, N. C.; Nakanishi, K.; Martin, V. S.; Sharpless, K. B. J. Am. Chem. Soc. 1982, 104, 3775

⁽⁹⁾ All derivatives were purified by HPLC and fully characterized by spectroscopic methods.