Scheme I

Scheme II

hydrate among the volatile products. Thus the reaction proceeds by intramolecular transfer of ${ }^{18} \mathrm{O}$ via a four-membered-ring intermediate.
The isomeric 1-[2-[(2-chloroethyl)sulfinyl]-2,2-dimethyl-ethyl]-3-cyclohexyl-1-nitrosourea (1d) ${ }^{12}$ decomposes in pH 7.0 buffer to give 2-[(2-chloroethyl)thio]-2-methylpropanal (8) and small amounts of 1-[(2-chloroethyl)thio]-2-methylpropene (10), ${ }^{13}$ 1-[(2-hydroxyethyl)thio]-2-methylpropene (11), ${ }^{13}$ cyclohexyl isocyanate, and dicyclohexylurea. Isolation of aldehyde 8 is in accord with the generation of the sulfoxide-substituted diazohydroxide 3d and then formation from the latter of a 3,3-di-methyl-2-(2-chloroethyl)-1,2-oxathietanium (4d), which undergoes proton loss at position 4 and breakage of the $\mathrm{O}-\mathrm{S}$ bond with formation of the propanal 8. The corresponding reaction of $1-$ [2-[(2-chloroethyl) sulfinyl- $\left.{ }^{18} \mathrm{O}\right]$-2,2-dimethylethyl]-3-cyclo-hexyl-1-nitrosourea $\left(1 d^{-18} O\right)^{11}$ to afford $2-[(2-c h l o r o e t h y l)-$ thio]-2-methylpropanal- ${ }^{18} O\left(8-{ }^{-18} O\right)$ is in accord with the suggested pathway.

Controlled aqueous decomposition of 1-[2-[2-chloroethyl)-sulfinyl]-1,1,2,2-tetramethylethyl]-3-tert-butyl-1-nitrosourea (1e) ${ }^{14}$ at pH 7.0 and $38^{\circ} \mathrm{C}$ afforded acetone, thioacetone, tert-butyl

[^0]isocyanate, and di-tert-butylurea. GC analysis ${ }^{5,15}$ of the reaction mixture permitted detection of the labile 3,3,4,4-tetramethyl1,2 -oxathietane (retention time 5.3 min), GC-MS analysis of which gave the corresponding correct m / e of $132 .{ }^{16}$ The GC analysis also detected 2,3-dimethyl-2-butene (9e) from the extrusion of SO from the 1,2-oxathietane. ${ }^{15}$ This alternative mode of cleavage has a counterpart in the fragmentation of the m / e 132 molecular ion of 5 e. ${ }^{16}$

Evidence for the existence of 1,2-oxathietane has not, to our knowledge, been hitherto reported. Only one report claiming the intermediacy of such a species in the pyrolysis of $1,2,3$-oxadithiolane 2 -oxide and thiirane 1 -oxide at $1043-1404 \mathrm{~K}$ has been made; ${ }^{17}$ however, no evidence was obtained for what now appears to be the characteristic $(2+2)$ cycloreversion. The latter reaction is anticipated by analogy with the 1,2 -dioxetanes. ${ }^{18}$ Attempts to isolate 1,2 -oxathietanes and to examine their possible chemiluminiscent behavior are in progress.

Acknowledgment. This work was supported by Grant 1 R01 CA21488-01 awarded by the National Cancer Institute, DHEW, to J.W.L. and by a grant from the Alberta Provincial Cancer Hospitals Board.
(15) Integrated GC peak areas of components given as percent relative to the tert-butyl isocyanate peak: vinyl chloride (14.5); thioacetone (7.0); 2,3-dimethyl-2-butene (53); acetone (22); 3,3,4,4-tetramethyl-1,2-oxathietane (2.0).
(16) m / e (\%) 132.15904 (10) M^{+}(measured for $\left.\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{SO}\right), 117(4)\left(\mathrm{M}^{+}\right.$ $\left.-\mathrm{CH}_{3}\right), 116(17)\left(\mathrm{M}^{+}-\mathrm{O}\right), 84(100)\left(\mathrm{M}^{+}-\mathrm{SO}\right), 74(8)\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}=\mathrm{S}^{+}\right)$.
(17) Carlsen, L.; Egsgaard, H. J. Chem. Soc., Perkin Trans. 2 1982, 279. Semiempirical CNDO/B calculations predict a planar configuration for 1,2oxathietane at least in the gas phase (Snyder, J. N.; Carlsen, L. J. Am. Chem. Soc. 1977, 99, 2931.
(18) (a) Kopecky, K. R.; Filby, J. E., Mumford, C.; Lockwood, P. A.; Ding, J.-Y. Can. J. Chem. 1975, 53, 1103. (b) Richardson, W. H.; Montgomery, F. C.; Yelvington, H. E.; O'Neal, H. E. J. Am. Chem. Soc. 1974, 96, 7525 . (c) Turro, N. J.; Lechtken, P. Ibid. 1972, 94, 2886. (d) White, E. H.; Wildes, P. D.; Weicko, J.; Doshan, H.; Wei, C. C. Ibid. 1973, 95, 7050 and references therein.

Stereocontrolled Osmylation of Medium-Ring Alkenes: Synthesis of a $\mathrm{C}_{1}-\mathrm{C}_{9}$ Erythronolide Fragment

E. Vedejs,* J. M. Dolphin, and H. Mastalerz

S. M. McElvain Laboratory of Organic Chemistry
Chemistry Department, University of Wisconsin Madison, Wisconsin
Received July 15, 1982
We are interested in the stereochemistry of medium- and large-ring alkene addition reactions, many of which occur with high selectivity. ${ }^{1}$ The goal is to identify dominant conformational factors that might have predictive value in synthesis. In this communication we report that osmylation of the nine-mem-bered-ring alkene 1 can be used for stereocontrolled synthesis of an erythronolide fragment having the correct $\mathrm{C}_{2}-\mathrm{C}_{6}$ stereochemistry. ${ }^{2}$ For comparison, two isomeric ten-membered-ring alkenes 2 and 3 have also been studied.

Syntheses of alkenes $\mathbf{1 - 3}$ are outlined in Scheme I. The α-oxo dithioester Diels-Alder reaction occurs with normal regiochemistry ${ }^{3}$ to give 4, which is efficiently desulfenylated to 5. ${ }^{4}$ After
(1) (a) Still, W. C. J. Am. Chem. Soc. 1979, 101, 2493. (b) Still, W. C.; Galynker, I. Tetrahedron 1981, 37,3981. (c) Still, W. C.; Galynker, I. J. Am. Chem. Soc. 1982, 104, 1774. (d) Doskotch, R. W.; Kelley, S. L., Jr.; Bufford, C. D. J. Chem. Soc., Chem. Commun. 1972, 1137. (e) Corey, E. J.; Nicolaou, K. C.; Melvin, L. S., Jr. J. Am. Chem. Soc. 1975, 97, 654.
(2) For total synthesis of erythronolide A, see: Corey, E. J.; Hopkins, P. B.; Kim, S.; Yoo, S.; Nambiar, K. P.; Falck, J. R. J. Am. Chem. Soc. 1979, 101, 7131 .
(3) Vedejs, E.; Arnost, M. J.; Dolphin, J. M.; Eustache, J. J. Org. Chem. 1980, 45, 2601.

Scheme I

ketalization, highly selective hydroboration with thexylborane leads to 6 after oxidative workup with alkaline $\mathrm{H}_{2} \mathrm{O}_{2}$. The key olefin 7 can then be prepared by deketalization, Wittig reaction, and benzylation, 42% overall from acyclic precursors. Three-carbon ring expansion by alkylation with $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O}_{2} \mathrm{CCH}\left(\mathrm{CH}_{3}\right) \mathrm{OSO}_{2} \mathrm{CF}_{3}$ followed by DBU affords 1 in 86% yield. The E-olefin geometry is proved by NOE studies (see below) and is anticipated provided that S -alkylation occurs with normal equatorial selectivity. ${ }^{5}$

[^1]Synthesis of $\mathbf{2}$ is accomplished by an adaptation of the remarkable 3,3 -rearrangement which is observed when dichloroketene is generated in the presence of allylic ethers or sulfides. ${ }^{6}$ Thus, $\mathrm{Cl}_{3} \mathrm{CCOCl}$ (1.5 equiv) is added to a refluxing mixture of $\mathrm{Zn} / \mathrm{Cu}$ (5 equiv), ether, and thiane 7. Dechlorination of the initial product 8 with $\mathrm{Zn} / \mathrm{HOAc}$ affords 2 in 80% yield from 7. The isomeric Z-olefin $\mathbf{3}$ is available from $\mathbf{2}$ by photosensitized isomerization of the double bond (33% of 3 recovered at 50% conversion of 2).

An assignment of preferred conformation along the $\mathrm{C}_{2}-\mathrm{C}_{7}$ segment of 1 can be made from NMR data. The crownlike
(6) Malherbe, R.; Bellus, D. Helv. Chim. Acta 1978, 61, 3096. Rosini, G.; Spineti, G. G.; Foresti, E.; Pradella, G. J. Org. Chem. 1981, 46, 2228.
geometry drawn in Scheme I follows from uniformly large coupling constants ($J_{2,3}=J_{3.4}=8.6 \mathrm{~Hz}, J_{4,5}=11 \mathrm{~Hz}$) for adjacent proton pairs and from NOE effects suggesting eclipsed C-4 (H) and C-6 $\left(\mathrm{CH}_{3}\right)$ groups (irradiate $\mathrm{C}-6\left(\mathrm{CH}_{3}\right), 23 \%$ enhancement at $\mathrm{C}-4(\mathrm{H})$, no enhancement at $\mathrm{C}-5(\mathrm{H})$; irradiate $\mathrm{C}-5(\mathrm{H}), 13 \%$ enhancement at C-3(H)). NOE experiments with the E-olefin 2 have proved inconclusive, and only two of the relevant coupling constants can be assigned securely: $J_{3,4} \cong J_{4.5}=10 \mathrm{~Hz}$. The dihedral angles for $\mathrm{H}-\mathrm{C}_{5}-\mathrm{C}_{4}-\mathrm{H}$ and $\mathrm{H}-\mathrm{C}_{4}-\mathrm{C}_{3}-\mathrm{H}$ apparently are similar in both 1 and 2. In the case of 3, NOE enhancement at $\mathrm{C}-5(\mathrm{H})$ is observed upon irradiation of C-6 $\left(\mathrm{CH}_{3}\right)$, and $J_{4.5}=12 \mathrm{~Hz}$ while $J_{3,4} \leq 1 \mathrm{~Hz}$. These results establish olefin geometry and suggest a preference for conformers in which the C-4 methyl avoids the C-7 methylene group and minimizes transannular interactions, as in 3 (Scheme I).

Osmylation of 1 occurs to give a single diol, 9 (75\%). ${ }^{7 a}$ To prove which alkene face is attacked, we converted 9 into 11 by treatment with W2 Raney nickel (desulfurization and debenzylation to 10) followed by acetonide formation with dimethoxypropane $/ \mathrm{TsOH}$. The values $J_{3.4}=J_{4,5}=2.2 \mathrm{~Hz}$ support a chairlike acetonide with an axial $\mathrm{C}_{4}-\mathrm{CH}_{3}$ group and equatorial isopropyl and lactone substituents. Similar (within 0.6 Hz) J values are reported for related erythronolide 3,5 -acetonide segments. ${ }^{8}$ Osmylation stereochemistry of 1 therefore corresponds to attack on the exposed olefin face of the conformer deduced from NMR data (Scheme I).

Diol intermediates have not been isolated from reaction of 2 or 3 with OsO_{4} /pyridine due to rapid S to O acyl transfer. ${ }^{76}$ Rearranged γ-lactones are formed in each case. Stereochemical correlation as before (Raney nickel desulfurization; acetonide formation) establishes the following events: $2 \rightarrow \mathbf{1 2} \rightarrow \mathbf{1 3} \rightarrow \mathbf{1 4}$ and $3 \rightarrow 15 \rightarrow 16 \rightarrow 17$. The correlation compound 17 a has $J_{3,4}$ $=1.8 \mathrm{~Hz}$ and $J_{4,5}=2.2 \mathrm{~Hz}$, values nearly identical with those of 11. Methylation of 17a (LDA, $\mathrm{CH}_{3} \mathrm{I}$) affords $\mathbf{1 7 b}$ (single major isomer), which is different from either methyl epimer of $\mathbf{1 1}$ but has similar $J_{3,4}$ and $J_{4,5}$ values. Therefore, 11 and 17 have the same stereochemistry at $\mathrm{C}_{3}, \mathrm{C}_{4}$, and C_{5}, but differ at C_{6} as expected from the differing olefin geometry in precursors 1 and 3. The correlation compound 14 a and the diastereomers 14 b obtained by methylation all have $J_{3,4}=3.7 \mathrm{~Hz}$ and $J_{4,5}=6.4 \pm 0.2 \mathrm{~Hz}$. These coupling constants are in excellent agreement with the corresponding values from Heathcock's analogous structure. ${ }^{86}$ Therefore, $\mathbf{1 4}$ must have unnatural stereochemistry at both C_{5} and C_{6} relative to erythronolide, and osmylation of the E-olefin isomer 2 in the ten-membered ring series must occur with opposite olefin face selectivity compared with the nine-membered E-olefin 1.

The correct diol 9 can be converted into an acyclic $\mathrm{C}_{1}-\mathrm{C}_{9}$ erythronolide fragment having differentiated oxygen substitution at each end of the chain. Acetonide 18 is easily prepared, and reaction with N-chlorosuccinimide affords α-chloro sulfide 19 (95%). Solvolysis $\left(\mathrm{H}_{2} \mathrm{O} / \mathrm{CH}_{3} \mathrm{CN} / \mathrm{CaCO}_{3}\right)$, borohydride reduction, and S-methylation afford the desired erythronolide segment 20 (73%). Related applications of this strategy to total synthesis will be described in due course.

Our approach was based on the expectation that 1 would adopt a crownlike geometry in the vicinity of the E olefin as shown in Scheme I. This seemed likely because numerous naturally occurring medium- or large-ring E olefins have similar local geometries in the solid state, and alkyl branch points α to the double bond adopt the pseudoequatorial orientation whenever possible. ${ }^{9}$
(7) (a) Osmylation of $1: 0.27 \mathrm{~mol}$ of $\mathrm{OsO}_{4}+0.182 \mathrm{mmol}$ of 1 , pyridine (3 mL), room temperature, 10 min ; $\mathrm{NaHSO}_{3}(1 \mathrm{~g})$ in $10 \mathrm{~mL} \mathrm{H} \mathrm{H}_{2} \mathrm{O}, 1 \mathrm{~h}$. (b) Osmylation of 2 or $3: 0.14 \mathrm{mmol}$ of $\mathrm{OsO}_{4}, 0.094 \mathrm{mmol}$ of 2 or $3,3 \mathrm{~mL}$ of pyridine, 30 min , room temperature. To cleave the osmate ester, 3 mercaptopropionic acid (0.8 mL) is added ($0.5 \mathrm{~h}, 0^{\circ} \mathrm{C}$.) After standard aqueous bicarbonate workup, the crude product is stirred with silica gel (4 g) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ overnight to complete conversion of diol into lactone.
(8) (a) Heathcock, C. H.; Hagen, J. P.; Jarvi. E. T.; Pirrung, M. C.; Young, S. D. J. Am. Chem. Soc. 1981, 103, 4972. Masamune, S.; Hirama, M.; Mori, S.; Ali, S. A.; Garvey, D. S. Ibid. 1981, 103, 1568. We thank Professors Heathcock and Masamune for comparison spectra. (b) Heathcock, C. H., Personal communication.

$\lambda 8, R=H$
12, R=C1
22

Erythronolide A
An extrapolation of this geometry to olefin cis-addition reactions is plausible for reactant-like transition states, and least hindered approach ("peripheral attack" ${ }^{1}$) corresponds to the conversion of 1 into 9.

We are aware of two examples in the literature where cyclic E olefins follow the same stereochemical pattern. Corey and Hopkins have recently shown that the $\mathrm{C}_{11}, \mathrm{C}_{12}$ hydroxyls of erythronolide A 3,5-diacetonide can be introduced with natural stereochemistry by osmylation of the corresponding E olefin. ${ }^{10 a}$ If the alkene adopts a crownlike local geometry, both α-alkyl branch points can occupy pseudoequatorial orientations. Similar olefin face selectivity is observed in the epoxidation of an α branched trisubstituted E olefin in the maytansinoid series. ${ }^{106}$ If these reactions are examples of a resonably general stereochemical phenomenon, it will be necessary to study simpler E olefins before the contrasting behavior of the ten-membered alkene 2 can be understood. At this point, speculations on the role of special features such as the transannular effect of a thiol ester π system would be premature. ${ }^{11}$

The stereochemistry of osmylation of the Z-olefin $\mathbf{3}$ also corresponds to least hindered attack (away from ring carbons) on a local geometry having a pseudoequatorial methyl group. There are some examples of related conformational preferences in the work of Still et al., ${ }^{1}$ and X-ray data support the notion that Z alkenes prefer local geometries similar to 3. ${ }^{12}$

[^2]Work is underway to determine the scope of local conformational control in medium-ring alkene addition reactions.

Acknowledgment. This work was supported by a grant from the National Science Foundation (CHE-8113026).

Supplementary Material Available: Spectral characterization of $\mathbf{1 - 3 , 9}$, and $\mathbf{2 0}$ (2 pages). Ordering information is given on any current masthead page.
(12) Selected medium-large-ring α-alkyl Z olefins. Dictiodiol: Finer, J.; Clardy, J.; Fenical, W.; Minale, L.; Riccio, R.; Battaile, J.; Kirkup, M.; More, R. E. J. Org. Chem. 1979, 44, 2044. Neolemnanes: Izac, R. R.; Fenical, W.; Tagle, B.; Clardy, J. Tetrahedron 1981, 37, 2569. Rubradirin: Hoeksema, H.; Mizsak, S. A.; Baczynski, L. J. Antibiot. 1979, 32, 773. Macbecins: Muroi, M.; Haibara, K.; Asai. M.; Kamiya, K.; Kishi, T. Tetrahedron 1981, 37, 1123. Latrunculine A: Kashman, Y.; Groweiss, A.; Shmueli, U. Tetrahedron Lett. 1980, 21, 3629.

Additivity Relation in the Amplitudes of Exciton-Split Circular Dichroism Curves Arising from Interactions between Different Chromophores and Its Application in Structural Studies

Richard J. Stonard, Diane A. Trainor, Munehiro Nakatani, and Koji Nakanishi*

Department of Chemistry, Columbia University New York, New York 10027

Received August 23, 1982
Interaction of the electric transition moments of two or more chromophores within a chiral molecule constitutes a coupled oscillator. ${ }^{1}$ This condition gives rise to Davydov split CD curves. ${ }^{2}$ The closer the $\lambda_{\max }$ of the interacting chromophores, the more efficient the coupling. ${ }^{3}$ However, a split CD is observed when the $\lambda_{\max }$ values differ by as much as 100 nm . ${ }^{3,4}$ Valid analyses can also be obtained when only one of the Cotton effect extrema is discernable. ${ }^{4,5}$

The results of over 40 pyranose p-bromobenzoates showed that the amplitudes of split CD curves (" A values") can be approximated by the sum of dibenzoate interactions which are constants. ${ }^{6}$ Herein we show that this additivity relation can be generalized as illustrated (Scheme I) by the interaction between enone (e.g., $1 \lambda_{\max } 244 \mathrm{~nm}(\epsilon 12400)$, and $2 \lambda_{\max } 243 \mathrm{~nm}(\epsilon 10300)$, in MeOH) and unsubstituted benzoate ($\lambda_{\max } 229.5 \mathrm{~nm}(\epsilon 15300$), in MeOH) chromophores. These results are then applied to a configurational problem involving complex natural product derivatives having benzoate and furan chromophores.

The phytocdysteroids ponasterone A (PN-A, 1) ${ }^{7}$ and ajugasterone C (AJG-C, 2) ${ }^{8}$ can be converted into the 2,3-dibenzoate 3 and 2,3,11-tribenzoate 4 of the respective 6 -hydroxy-20,22-

[^3]

Figure 1. CD of 12-benzoates and 7,12-dibenzoates of trichilins A and B , in MeOH .

Scheme I

- Bz
\perp ponaslerone $A R=H$
2 ofugasierone $C: R=O H$

7 murislerone $R=O H$
814 -desoxy murislerone $R=H$

acetonides, by acid hydrolysis of the 2,3,20,22-diacetonide to the 20,22-acetonide, benzoylation, and NaBH_{4} reduction. ${ }^{9}$ Dibenzoate 3 displays a split CD (all data in MeOH) with negative/positive Cotton effects at $237 \mathrm{~nm} / 219 \mathrm{~nm}, A-33$, arising from the negatively coupled oscillator (see conformational structure I). In tribenzoate 4 the A value is -59 . In view of the additivity relation, ${ }^{6}$ the 2,3 -dibenzoate and 11-benzoate interaction can then be assigned an A value of -26^{*} (calculated values indicated by

[^4]
[^0]: (11) Prepared by the methylene blue sensitized photooxidation of 1a, 1d, or 1 e in methanol in the presence of ${ }^{18} \mathrm{O}_{2}\left(99 \%\right.$ isotopic enrichment), $1 \mathrm{a}^{-18} \mathrm{O}$; $m / e ~ 312,249(100), \mathrm{M}^{+}-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Cl} \equiv \mathrm{C}_{11} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{OS}^{18} \mathrm{O}$.
 (12) Prepared as described in ref 8 from (2-hydroxy-2-methylpropyl)amine.
 (13) These products arise from a competing minor deoxygenation pathway of the parent sulfoxide giving rise, in each case, to traces of aqueous decomposition products characteristic of the corresponding thioether nitrosourea ${ }^{8}$ (Scheme II).
 (14) Prepared from tetramethylaziridine (Closs, G. L.; Brois, S. J. J. Am Chem. Soc. 1960, 82, 6068) as described in footnote 9. The tert-butyl group ensures the desired regiochemistry in the nitrosation step.

[^1]: (4) Desulfenylation with $\mathrm{Ph}_{3} \mathrm{P} / \mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H} / \mathrm{EtOH}:$ Oki, M.; Fukanishi W.; Nakamura, A. Bull. Chem. Soc. Jpn. 1971, 44, 828, 832.
 (5) Vedejs, E.; Arco, M. J.; Powell, D. W.; Renga, J. M.; Singer, S. P. J Org. Chem. 1978, 43, 4831. Cerē, V.; Paolucci, C.; Pollicino, S.; Sandri, E.; Fava, A. Ibid. 1981, 46, 3315.

[^2]: (9) Selected medium-large-ring α-alkyl E olefins. Dolabella diterpenes: Ireland, C.; Faulkner, D. J.; Finer, J.; Clardy, J. J. Am. Chem. Soc. 1976, 98, 4664 . Kijanimycin: Mallams, A. K.; Puar, M. S.; Rossman, R. R.; McPhail, A. T.; Macfarlane, R. D. Ibid. 1981, 103,3940 . Avermectins: Springer, J. P.; Arison, B. H.; Hirshfield, J. M.; Hoogsteen, K. Ibid. 1981, 103, 4221. Kromycin: Tsai, C.; Stezowski, J. J.; Hughes, R. E. Ibid. 1971, 93, 7286. Whaley, H. A.; Chidester, C. G.; Mizsak, S. A. Wruk, R. J. Tetrahedron Lett. 1980, 21, 3659. Obtusallene: Cox, P. J;; Imre, S.; Islimyeli, S.; Thomson, R. H. Ibid. 1982, 23, 579. Tetronolide: Hirayama, N.; Kasai, M.; Shirahata, K.; Ohashi, Y.; Sada, Y. Ibid. 1980, 21, 2559. Euphoscopins: Yamamura, S.: Kosemura, S.; Ohba, S.; Ito, M.; Saito, Y. Ibid. 1981, 22, 5315. Euglobal: Sawada, T.; Kozuka, M.; Komiya, T.; Amano, T.; Goto, M Chem. Pharm. Bull. 1980, 28, 2546. Cytochalasin H: Beno, M. A.; Cox, R H.; Wells, J. M.; Cole, R. J.; Kirksey, J. W.; Christoph, G. G. J. Am. Chem Soc. 1977, 99, 4123. Chaetoglobosins: Springer, J. P.; Clardy, J.; Wells, J. M.; Cole, R. J.; Kirksey, J. W.; Macfarlane, R. D.; Togerson, D. F. Tetrahedron Lett. 1976, 1355 .
 (10) (a) Corey, E. J.; Hopkins, P. B. Tetrahedron Lett. 1982, 23, 1979. (b) Corey, E. J.; Weigel, L. O.; Chamberlin, R.; Cho, H.; Hua, D. H. J. Am. Chem. Soc. 1980, 102, 6613.
 (1i) An acyclic derivative of $\mathbf{2}$ is osmylated with essentially no selectivity. Thus, thiol lactone cleavage (LiOEt) and S -acylation followed by OsO_{4} affords a $1.5: 1$ mixture of γ-lactones that have been converted into 14 a and 11, respectively.

[^3]: (1) Kuhn, W. Trans. Faraday Soc. 1930, 2B, 293. (b) Kirkwood, J. G. J. Chem. Phys. 1937, 5, 479.
 (2) (a) Moffitt, W. J. Chem. Phys. 1956, 25, 467. (b) Schellman, J. A.; Oriel, P. Ibid. 1962, 37, 2114. (c) Mason, S. F. Proc. Chem. Soc. 1962, 362. (d) Schellmann, J. A. Acc. Chem. Res. 1968, 1, 144. (e) Bosnich, B. Ibid. 1969, 2, 266. (f) Johnson, W. C.; Tinoco, I., Jr. Biopolymers 1969, 8, 715. (g) Buckingham, A. D.; Stiles, P. J. Acc. Chem. Res. 1974, 7, 258.
 (3) (a) Harada, N.; Nakanishi, K. Acc. Chem. Res. 1972, 5, 257; (b) "Circular Dichroic Spectroscopy-Exciton Coupling in Organic Stereochemistry"; University Science Books: Mill Valley, CA, 1983; p 550.
 (4) Harada, N.; Iwabuchi, J.; Yokota, Y.; Uda, H.; Nakanishi, K. J. Am. Chem. Soc. 1981, 103, 5590.
 (5) Gonnella. N. C.; Nakanishi, K.; Martin, V. S.; Sharpless, K. B. J. Am. Chem. Soc. 1982, 104, 3775.
 (6) Liu, H. W.; Nakanishi, K. J. Am. Chem. Soc. 1982, 104, 1178.
 (7) Nakanishi, K.; Koreeda, S.; Sasaki, S.; Chang, M. L.; Hsu, H. Y. J. Chem. Soc., Chem. Commun. 1966, 915.
 (8) Imai, S.; Murata, E.; Fujioka, S.; Koreeda, M.; Nakanishi, K. J. Chem. Soc., Chem. Commun. 1969, 546.

[^4]: (9) All derivatives were purified by HPLC and fully characterized by spectroscopic methods.

